Application of Novel Reinforcement Learning Automata Approach in Power System Regulation

نویسندگان

  • Mohammad Kashki
  • Youssef Lotfy Abdel-Magid
  • Mohammad Ali Abido
چکیده

In this paper, a novel efficient optimization method based on reinforcement learning automata (RLA) for optimum parameters setting of conventional proportional-integralderivative (PID) controller for AVR system of power synchronous generator is proposed. The proposed method is Combinatorial Discrete and Continuous Action Reinforcement Learning Automata (CDCARLA) which is able to explore and learn to improve control performance without the knowledge of the analytical system model. This paper demonstrates the full details of the CDCARLA technique and compares its performance with Particle Swarm Optimization (PSO) as an efficient evolutionary optimization method. The proposed method has been applied to PID controller design. The simulation results show the superior efficiency and robustness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

Multi-Objective Learning Automata for Design and Optimization a Two-Stage CMOS Operational Amplifier

In this paper, we propose an efficient approach to design optimization of analog circuits that is based on the reinforcement learning method. In this work, Multi-Objective Learning Automata (MOLA) is used to design a two-stage CMOS operational amplifier (op-amp) in 0.25μm technology. The aim is optimizing power consumption and area so as to achieve minimum Total Optimality Index (TOI), as a new...

متن کامل

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

A Learning Automata based Solution for Optimizing Dialogue Strategy in Spoken Dialogue System

Application of reinforcement learning methods in the development of dialogue strategies that support robust and efficient human–computer interaction using spoken language is a growing research area. In spoken dialogue system, Markov Decision Processes (MDPs) provide a formal framework for making dialogue management decisions for planning. This framework enables the system to learn the value of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Circuits, Systems, and Computers

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2009